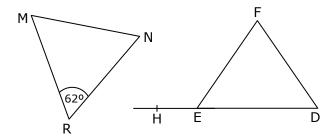
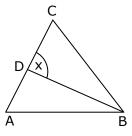

1. Según la información entregada en los triángulos de la figura adjunta, ¿cuál de las siguientes afirmaciones es verdadera?



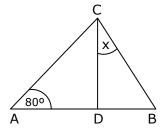
- A) $\Delta(1)$ es congruente con el $\Delta(2)$
- B) $\Delta(1)$ es congruente con el $\Delta(3)$
- C) $\Delta(2)$ es congruente con el $\Delta(3)$
- D) $\Delta(2)$ es congruente con el $\Delta(4)$
- 2. En la figura adjunta, $\triangle MRN \cong \triangle DFE$. Si $\overline{MN} \cong \overline{NR}$, ¿cuánto mide el ángulo exterior HEF?
 - A) 56°
 - B) 124°
 - C) 112º
 - D) 118°

- 3. Si en un triángulo equilátero se dibuja una de sus bisectrices, entonces se forman dos triángulos
 - A) escalenos rectángulos congruentes.
 - B) isósceles rectángulos congruentes.
 - C) acutángulos escalenos congruentes.
 - D) acutángulos congruentes.


4. En la figura adjunta, el triángulo ABC es isósceles de base \overline{AB} y \overline{BD} es bisectriz del $\angle ABC$. Si $\angle CAB = 70^{\circ}$, entonces la medida de ángulo \mathbf{x} es

C) 105°

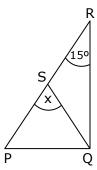
D) 90°


5. En el triángulo ABC de la figura adjunta, $\overline{AB}\cong \overline{AC}$ y \overline{CD} es altura. La medida del ángulo $\mathbf x$ es

B) 20°

C) 40°

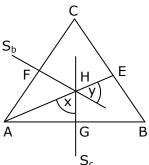
D) 50°


6. El triángulo PQR de la figura adjunta es rectángulo en Q y $\overline{SP}\cong \overline{SR}$. Entonces, la medida del $\measuredangle x$ es

B) 45°

C) 65°

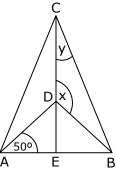
D) 75°


7. En la figura adjunta, el $\triangle ABC$ es equilátero, S_b y S_c son simetrales, \overrightarrow{AE} es bisectriz del $\angle BAC$, entonces ¿cuál es el valor de x + y?

B) 90°

C) 100°

D) 120°


8. En la figura adjunta, los $\triangle ABD$ y $\triangle BDC$ son isósceles de base \overline{AB} y \overline{BC} , respectivamente. Si E, D y C son puntos colineales y E es punto medio de \overline{AB} , entonces $\angle x + \angle y =$

C) 140°

9. En un triángulo acutángulo ABC se traza la altura \overline{CD} , luego este segmento se prolonga de manera tal que CE = 2CD y D pertenece a \overline{CE} . ¿Cuál(es) de las siguientes afirmaciones es (son) **siempre** verdadera(s)?

I) $\triangle ABC \cong \triangle ABE$

II) $\triangle ADC \cong \triangle ADE$

III) $\triangle ADE \cong \triangle BDC$

A) Solo I

B) Solo I y II

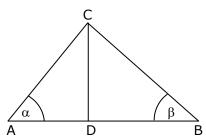
C) Solo I y III

D) Solo II y III

E) I, II y III

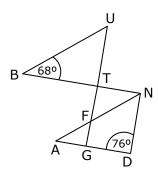
(Fuente, DEMRE 2015)

10. En la figura adjunta, $\overline{\text{CD}}$ es una altura del triángulo ABC. ¿Cuál de las siguientes afirmaciones **NO** permite concluir que el triángulo ADC sea congruente con el triángulo BDC?

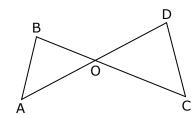

A) $\alpha = \beta$

B) D es el punto medio de \overline{AB} .

C) $\alpha + \beta = 90^{\circ}$

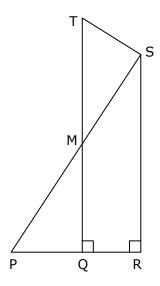

D) AC = CB

E) CD es un eje de simetría del triángulo ABC.

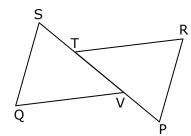

(Fuente, DEMRE 2014)

11. En la figura adjunta, los triángulos BUT y AND son congruentes en ese orden.

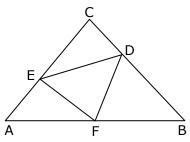
Si \overline{BU} // \overline{AN} y los segmentos BN y UG se intersectan en T, entonces el \measuredangle GFN mide


- A) 144°
- B) 140°
- C) 76°
- D) 68°
- 12. Los segmentos AD y BC, de la figura adjunta, se intersectan en el punto O.

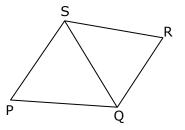
Para demostrar que los triángulos AOB y COD son congruentes, es necesario saber que

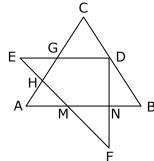

- A) $\overline{AB} \cong \overline{DC}$
- B) \overline{AB} // \overline{CD}
- C) $\overline{AO} \cong \overline{DO}$ y $\overline{AB} \cong \overline{DC}$
- D) $\overline{BO} \cong \overline{CO}$ y $\overline{AO} \cong \overline{DO}$

13. La figura adjunta está formada por el triángulo PQM y el trapecio rectángulo QRST.

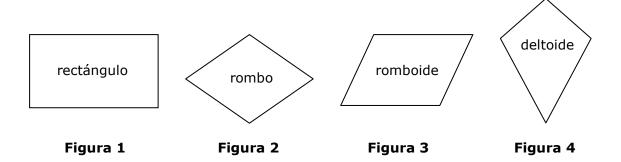


Se puede determinar que el triángulo PQM es congruente con el triángulo TSM, si se sabe que


- A) $\angle SPR = 60^{\circ} \text{ y } \overline{PQ} \cong \overline{QR}$
- B) \angle SPR = 60° y $\overline{QR} \cong \overline{ST}$
- C) $\overline{QM} \cong \overline{TM}$ y $\overline{TS} \perp \overline{PS}$
- D) $\overline{PQ} \cong \overline{TS}$ y $\overline{TS} \perp \overline{PS}$
- 14. En la figura adjunta, P, V, T y S son puntos colineales, $\triangle PTR$ y $\triangle SVQ$ son congruentes en ese orden. $\angle Cuál(es)$ de las siguientes afirmaciones es (son) **siempre** verdadera(s)?
 - I) $\overline{TR} // \overline{VQ}$
 - II) \overline{PR} // \overline{SQ}
 - III) $\angle SQV \cong \angle PRT$
 - A) Solo II
 - B) Solo I y II
 - C) Solo I y III
 - D) I, II y III


- 15. En la figura adjunta, el \triangle ABC es equilátero y AF = BD = CE. El criterio que permite demostrar que los triángulos AFE, CED y BDF son congruentes es
 - A) ALA
 - B) LAL
 - C) LLL
 - D) LLA>

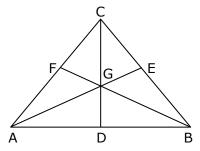
- 16. En el cuadrilátero PQRS de la figura adjunta, PS = QS = RS, PQ = QR y \angle SQR=2 \angle QSR. Entonces, \angle SPQ =
 - A) 144°
 - B) 108°
 - C) 90°
 - D) 72°



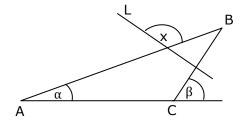
- 17. Los puntos M, N, G y H están en los lados de los triángulos ABC y EDF a la vez, como se muestra en la figura adjunta. Si D pertenece a \overline{BC} , AM = MN = NB y \overline{EF} // \overline{BC} , entonces es **siempre** verdadero que
 - A) $\triangle AMH \cong \triangle MNF$
 - B) $\Delta BND \cong \Delta MNF$
 - C) $\Delta GDC \cong \Delta MNF$
 - D) \triangle EGH \cong \triangle GCD

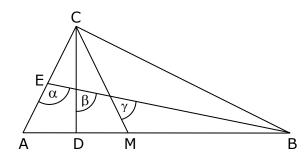
(Fuente, DEMRE 2016)

18. Dadas las siguientes 4 figuras:

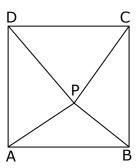


no se forma un par de triángulos congruentes cuando,


- A) en la figura 1 se traza una de sus diagonales.
- B) en la figura 2 se traza la diagonal menor.
- C) en la figura 3 se traza la diagonal mayor.
- D) en la figura 4 se traza la diagonal menor.
- 19. En el triángulo ABC de la figura adjunta, D, E y F puntos medios, de los lados respectivos, como muestra la figura adjunta. Si CD: AE: BF = 3:5:4 y AE = 15 cm, entonces CG + AG + GF =


- B) 15 cm
- C) 19 cm
- D) 20 cm

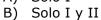
- 20. En la figura adjunta, $\triangle ABC$ es escaleno y L es simetral del lado BC. Si $\alpha = 30^{\circ}$ y $\beta = 75^{\circ}$, entonces ¿cuánto mide el $\angle x$?
 - A) 135°
 - B) 120°
 - C) 105°
 - D) 60°



21. En el triángulo ABC, rectángulo en C de la figura adjunta. $\overline{\text{CD}}$ es altura, $\overline{\text{CM}}$ es transversal de gravedad y BE es bisectriz.

Respecto a los ángulos α , β y γ es correcto afirmar que

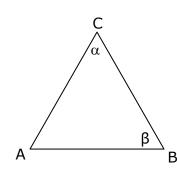
- A) si $\alpha=110^\circ$, entonces β mide 10° más de γ . B) si $\alpha=110^\circ$, entonces β y γ son ángulos suplementarios. C) si β y γ son ángulos complementarios entonces $\alpha=110^\circ$.
- D) si α = 110°, entonces la suma de β + $\frac{\gamma}{2}$ es igual a α .
- 22. En el cuadrado de la figura adjunta, si $\triangle DPA \cong \triangle CPB$, entonces se puede concluir que el ∆APB es **siempre**

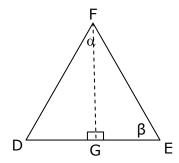


- A) rectángulo.
- B) isósceles rectángulo.
- C) isósceles.
- D) obtusángulo.
- E) equilátero.

(Fuente, DEMRE 2013)

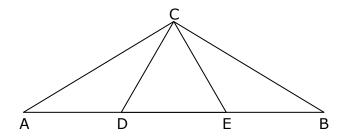
- 23. En la figura adjunta, los triángulos ABC y DEF son congruentes y AC = CB. ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - I) $\triangle DGF \cong \triangle EGF$
 - II) Los triángulos ABC y DEF pueden ser equiláteros.
 - III) $DG = \frac{AB}{2}$





C) Solo I y III

D) Solo II y III


E) I, II y III

(Fuente, DEMRE 2014)

- 24. En un triángulo cualquiera se forman **siempre** triángulos congruentes, si en él se trazan
 - A) las tres medianas.
 - B) las tres simetrales.
 - C) las tres tranversales de gravedad.
 - D) las tres bisectrices.
- 25. En el triángulo ABC de la figura adjunta, se puede asegurar que los triángulos ADC y BEC son congruentes, si

- A) $\triangle DEC$ es isósceles de base \overline{DE} , $\angle ECD = 80^{\circ}$ y $\angle CAD = \angle BCE = 25^{\circ}$.
- B) los triángulos DEC y EBC son isósceles de bases $\overline{\rm DE}$ y $\overline{\rm BC}$, respectivamente.
- C) el triángulo DEC es equilátero $\angle CAD + \angle DCA = 60^{\circ}$ y $\angle EBC + \angle BCE = 60^{\circ}$.
- D) el triángulo DEC es rectángulo en C, y \angle ADC = \angle CEB = 135°.

RESPUESTAS

1.	D	6.	Α	11.	Α	16.	D	21.	Α
2.	В	7.	D	12.	D	17.	В	22.	С
3.	Α	8.	D	13.	D	18.	D	23.	E
4.	С	9.	В	14.	D	19.	D	24.	Α
5.	С	10.	С	15.	В	20.	Α	25.	Α