FUNCIÓN POTENCIA

La función de la forma $f(x) = a \cdot x^n$, con a y n números reales y $a \ne 0$ recibe el nombre de función potencia.

Ejemplos:

$$f(x) = \frac{1}{2}x^{2} \qquad g(x) = -\frac{3}{4}x^{-4} \qquad h(x) = -3x^{3} \qquad r(x) = \frac{5}{6}x^{-5}$$

$$f(x) = -2x^{-\frac{1}{2}}$$

$$f(x) = 3x^{-\pi}$$

$$f(x) = 3x^{-\pi}$$

Gráfico de la Función Potencia

Se analizará la función potencia para exponente pares positivos y negativos, exponentes impares positivos y negativos, para coeficientes positivos y también negativos.

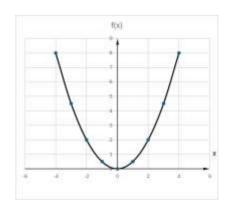
Exponente Par Positivo

Si en la función $f(x) = a \cdot x^n$ el exponente n es par positivo su gráfica será simétrica respecto al eje de las ordenadas.

Exponente par positivo y coeficiente positivo, en este caso las ramas de la gráfica se abren hacia arriba.

Se considerará para este caso la función $f(x) = \frac{1}{2} \cdot x^2$, su gráfica y características serán:

- Dominio: IR - Recorrido: IR₀+


- Punto Mínimo: (0,0)

- La gráfica se encuentra en el primer y segundo cuadrante.

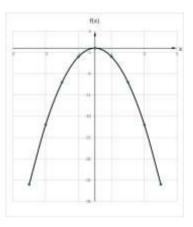
- Decreciente:]-∞, 0[

- Creciente:]0, +∞[

- Convexa (ramificación hacia arriba)

Exponente par positivo y coeficiente negativo, las ramas de la gráfica se abren hacia abajo.

Se considerará para este caso la función $f(x) = -2 \cdot x^2$, su gráfica y características serán:


Dominio: IRRecorrido: IR₀

- Punto Máximo: (0,0)

- La gráfica se encuentra en el tercer y cuarto cuadrante.

Creciente:]-∞, 0[Decreciente:]0, +∞[

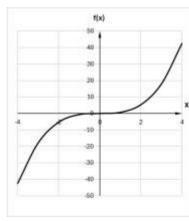
- Cóncava (ramificación hacia abajo)

Exponente Impar Positivo

Si en la función $f(x) = a \cdot x^n$ el exponente n es impar positivo su gráfica será simétrica respecto al origen del sistema cartesiano.

Exponente impar positivo y coeficiente positivo.

Se considerará para este caso la función $f(x) = \frac{2}{3} \cdot x^3$, su gráfica y características serán:


Dominio: IRRecorrido: IR

- La gráfica se encuentra en el primer y tercer cuadrante.

- Creciente:]- ∞ , + ∞ [

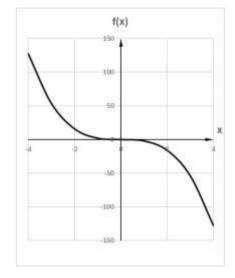
- Punto de inflexión: (0,0)

Cóncava:]-∞, 0[
 Convexa:]0, +∞[

Exponente impar positivo y coeficiente negativo.

Se considerará para este caso la función $f(x) = -2 \cdot x^3$, su gráfica y características serán:

- Dominio: IR


- Recorrido: IR

 La gráfica se encuentra en el segundo y cuarto cuadrante.

- Decreciente:]- ∞ , + ∞ [

- Punto de inflexión: (0,0)

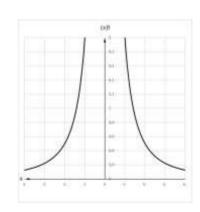
Cóncava:]0, +∞[Convexa:]-∞, 0[

Exponente Par Negativo

Si en la función $f(x) = a \cdot x^n$ el exponente **n** es par negativo, la gráfica de la función tendrá dos asíntotas, que son el eje x y el eje y.

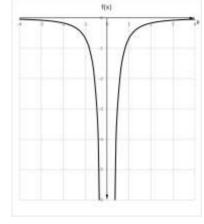
Para **n** par negativo y **a** coeficiente real positivo, se considerará la función $f(x) = 2 \cdot x^{-2}$, su gráfica y características serán:

- Dominio: IR - {0}


- Recorrido: IR+

- La función es creciente para los valores negativos de x.

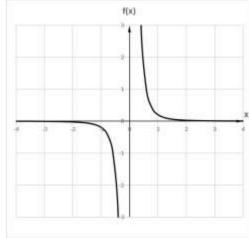
- La función es decreciente para los valores positivos de \boldsymbol{x} .


- La gráfica se encuentra en el primer y segundo cuadrante.

- Convexa:]- ∞ , 0[y]0, + ∞ [

Para **n** par negativo y **a** coeficiente real negativo, se considerará la función $f(x) = -\frac{2}{3} \cdot x^{-2}$, su gráfica y características serán:

- Dominio: IR {0}
- Recorrido: IR-
- La función es creciente para los valores positivos de x.
- La función es decreciente para los valores negativos de x.
- La gráfica se encuentra en el tercer y cuarto cuadrante.
- Cóncava:]-∞, 0[y]0, +∞[

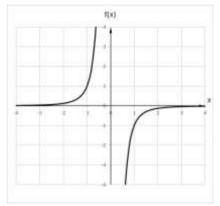


Exponente Impar Negativo

Si en la función $f(x) = a \cdot x^n$ el exponente **n** es impar negativo, la gráfica de la función tendrá dos asíntotas, que son el eje x y el eje y.

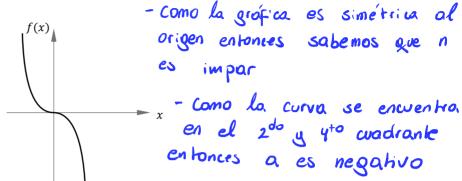
Para **n** impar negativo y **a** coeficiente real positivo, se considerará la función $f(x) = \frac{1}{5}x^{-3}$, su gráfica y características serán:

- Dominio: IR {0}Recorrido: IR {0}
- La función es]- ∞ , 0[y]0, + ∞ [
- La gráfica se encuentra en el primer y tercer cuadrante.
- Cóncava:]-∞, 0[
- Convexa; $]0, +\infty[$


Para **n** impar negativo y **a** coeficiente real negativo, se considerará la función $f(x) = -x^{-3}$, su gráfica y características serán:

Dominio: IR - {0}Recorrido: IR - {0}

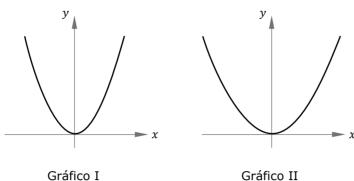
- La función es creciente en]- ∞ , 0[y]0, + ∞ [


- La gráfica se encuentra en el segundo y cuarto cuadrante.

Cóncava;]0, +∞[Convexa:]-∞, 0[

EJERCICIOS

1. En la figura adjunta se tiene la representación gráfica de una función potencia $f(x) = a \cdot x^n$.


¿Cuál de las siguientes afirmaciones es verdadera respecto a esta función?

- A) a es positivo y n es negativo.
- B) a es positivo y n es par.
- C a es negativo y n es impar.
- D) a es igual a 1 y n es negativo.
- 2. ¿Cuál de las siguientes situaciones **no** se puede modelar usando una función potencia?
 - A) El área de un rectángulo de lado I^4 y cuyo ancho mide el 25% de lo que mide el largo.
 - B) El perímetro de un triángulo rectángulo cuya hipotenusa mide 10a⁵ y uno de sus catetos mide 8a⁵.
 - C) El volumen de un cilindro cuyo radio basal mide la quinta parte de lo que mide la altura.
 - D El área de un cuadrado de lado $(x 2)^3$.

La alternativa D toma la siguiente forma: $A(x) = (x-2)^6$

Esto es distinto a la forma f(x) = a. xn

Los gráfico I y II adjuntos son representativos del funciones del tipo $f(x) = a \cdot x^n$. 3.

Según la forma de estas curvas, ¿cuál de las siguientes afirmaciones es siempre

- verdadera?

 Con n igval, mientes

 A) En ambos gráficos, a tiene el mismo valor.

 B) Si n es igual en ambos gráficos, entonces a es menor en el gráfico II. Mas cerca del Eje y

 C) En el gráfico I e versases

estará la cuna.

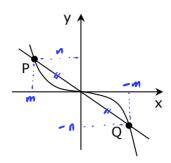
- C) En el gráfico I, a y n son menores que en gráfico II.
- D) En ambos gráficos el cuadrado de a es mayor que 1.
- Si f(x) es una función potencia definida como $f(x) = x^{\sqrt{2}}$, entonces f(4) + f(8) =

C)
$$12 \cdot 2^{\sqrt{2}}$$

D) $2^{2\sqrt{2}}(1+2^{\sqrt{2}})$ $f(4)+f(8)=4^{1}+8^{12}=2^{12}+2^{3}=2^{12}(1+2^{12})$

Si $f(x) = 2 \cdot x^{\frac{2}{3}}$, entonces f(8) =

$$f(g) = 2 \cdot g$$


A) 4
$$f(8) = 2 \cdot 8$$

B) 6
C) 18 =
$$2 \cdot 2^{3 \cdot 2/3}$$

$$0) 8 = 2 \cdot 2^2 = 8$$

- 6. Si $h(x) = -\frac{2}{5}x^4$ tiene como dominio el conjunto de los números reales, ¿cuál de las verdadero, pues n es par (Eje y es el eje de simetro) siguientes afirmaciones es verdadera?
 - A La función h tiene un eje de simetría.
 - B) El gráfico de la función h, es simétrico respecto al origen.
 - C) La función h es decreciente en todo su dominio. D) Las ramas de la función se abren hacia arriba.

En la figura adjunta se representan las gráficas de las funciones f(x) = -x y $g(x) = -x^3$. 7.

Si las coordenadas de P son (m, n), ¿cuáles son las coordenadas de Q?

$$Q = (-m, -n)$$

¿Cuál de las siguientes funciones es simétrica con respecto al origen? 8.

A)
$$f(x) = 3x^4$$

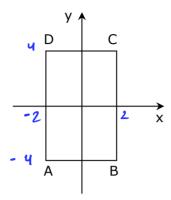
A)
$$I(X) = 3X$$

A)
$$f(x) = 3x^4$$
B) $g(x) = -2x^6$
C) $h(x) = (x - 2)^3$
D) $t(x) = (x + 1)^5$
Pese a give tiener exponente impar, estan desplazados

E) $r(x) = -4x^3$

D)
$$t(x) = (x + 1)^5$$

(E)
$$r(x) = -4x^3$$


- Si $f(x) = -\frac{1}{3}x^3$ tiene como dominio el conjunto de los números reales, ¿cuál de las 9. siguientes afirmaciones es correcta?
 - A) El gráfico de la función f es simétrica respecto al eje de las ordenadas.

B El gráfico de la función f esta en el segundo y cuarto cuadrante.
C)
$$f(x) = f(-x)$$

C)
$$f(x) = f(-x)$$

D)
$$f(4) = -4$$

10. En el rectángulo ABCD de la figura adjunta los ejes cartesianos son sus ejes de simetría.

- Si A(-2, -4), ¿cuál de las siguientes funciones tienen gráficas que pasa por dos vértices
- A) $f(x) = \frac{1}{2}x^3$ pase par les vértices A y CB) $g(x) = x^2$ pase par les vértices B y CC) $h(x) = -\frac{1}{2}x^3$ pase par les vértices B y C
- Todas las gráficas pasan por dos de los vértices del rectángulo.
- 11. Sean las funciones reales $f(x) = x^2$, $g(x) = x^3$ y $h(x) = x^4$, ¿cuál de las siguientes desigualdades es verdadera?
 - A) f(x) < g(x) < h(x) para todo número real.
 - B) f(x) < g(x) < h(x) para todo número real distinto de 0 y de 1.
 - C) f(x) < g(x) < h(x) para todo número real positivo distinto de 1.
 - D) f(x) < g(x) < h(x) para todo número real negativo distinto de -1.
 - (E) f(x) < g(x) < h(x) para todo número real mayor que 1.

(Fuente, DEMRE 2011)

- 12. Si $f(x) = 4x^2$, $g(x) = x^3$ y $h(x) = x^4$, ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
 - $f(x) \neq g(x)$, para todo número real x distinto de cero. f(x) = g(x)
 - f(x) = h(x), para algún número real x distinto de cero. $V \rightarrow F(2) = h(2)$
 - f(x) < g(x) < h(x), para todo número real x distinto de cero.

 - A) Solo I

 B Solo II
 - C) Solo III
 - D) Solo I y II
 - E) Solo II y III

(Fuente, DEMRE 2009)

13. Dadas las funciones $f(x) = x^2$, $g(x) = \frac{1}{3}x^2$ y $h(x) = 3x^2$, ¿cuál de las siguientes opciones es correcta?

$$f(1|3) = \frac{1}{9}$$
 $h(1|3) = \frac{1}{3}$

f(2) = h(2)

A)
$$f\left(\frac{1}{3}\right) < g\left(\frac{1}{3}\right) < h\left(\frac{1}{3}\right)$$
 $g(1/3) = \frac{1}{27}$

(B)
$$g\left(\frac{1}{3}\right) < f\left(\frac{1}{3}\right) < h\left(\frac{1}{3}\right)$$

(C) $f\left(\frac{1}{3}\right) < h\left(\frac{1}{3}\right) < g\left(\frac{1}{3}\right)$

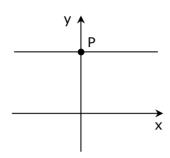
D)
$$g\left(\frac{1}{3}\right) < h\left(\frac{1}{3}\right) < f\left(\frac{1}{3}\right)$$

E)
$$f\left(\frac{1}{3}\right) < g\left(\frac{1}{3}\right) = h\left(\frac{1}{3}\right)$$

(Fuente, DEMRE 2010)

14. La función potencia $f(x) = x^n$ se traslada verticalmente hacia abajo 2 unidades, resultando la función q(x), en esta nueva función, la imagen de 2 es 30, entonces $n^2 + 3 =$

$$g(x) = x^{n} - 2$$


D)
$$q(2) + 5$$

$$g(z) = 30 \Rightarrow 2^{n} - 2 = 30$$

$$2^{n} = 32 \implies n = 5$$

$$luego_1$$
 $n^2 + 3 = 28$
= $g(z) - 2$

15. En la figura adjunta se muestra la recta representativa de la función y = 3.

¿La gráfica de cuál de las siguientes funciones corta a la recta a mayor distancia del punto P?

- mientras menor sea a , entonues mas alejado

- del Eje y estará la curva
- $y = \frac{1}{4}x^4$
- D) $y = -4x^4$
- 16. Si $g(x) = x^3$, entonces $\frac{g(p) + g(q)}{p + q}$, con $p \neq -q$, es
 - A) $p^{2} + q^{2}$ B) $p^{2} pq + q^{2}$ C) $p^{2} q^{2}$ D) $(p + q)^{2}$ E) $p^{2} + pq + q^{2}$ $p^{3} + q^{3}$ $p^{2} pq + q^{2}$
- 17. Si $f(x) = \sqrt[5]{x^2}$ y $g(x) = \sqrt[5]{x^3}$, ¿cuál de las siguientes funciones resultante de la operación indicada, no corresponde a una función potencia?

 - A) $f(x) \cdot g(x)$ B) f(x) + g(x)S) $\sqrt{x^2} + \sqrt[5]{x^3}$ no hiere le forme e x

- D) $\left[f(x) \right]^{-1} \cdot g(x)$

- 18. La gráfica de la función potencia $f(x) = a \cdot x^n$ se encuentra en el cuadrante III y el cuadrante IV, entonces en relación al coeficiente a y al exponente n, se cumple
 - A) a > 0 y n impar negativo.
 - B) a < 0 y n impar positivo.
 - C) a > 0 y n par positivo.
 - \bigcirc a < 0 y n par negativo.

n Here ex ser

- 19. La gráfica de la función potencia $f(x) = a \cdot x^n$ se encuentra en el cuadrante I y III, si:
 - (1) a = 2
 - (2) n = -3
 - A) (1) por sí sola
 - B) (2) por sí sola
 - Ambas juntas, (1) y (2)
 - D) Cada una por sí sola, (1) ó (2)
 - E) Se requiere información adicional
- 20. Se puede determinar que la función $f(x) = a \cdot x^n$, cuyo dominio es el conjunto de los números reales, es creciente, si se sabe que:
 - (1) n es un impar mayor que uno.

- (2) a es un número real positivo.
- A) (1) por sí sola
- B) (2) por sí sola
- C Ambas juntas, (1) y (2)
- D) Cada una por sí sola, (1) ó (2)
- E) Se requiere información adicional

nimpac > 1

se necesiton (1) y(2)

luego se necesita (1) y(2)

RESPUESTAS

1.	С	6.	Α	11.	E	16.	В
2.	D	7.	В	12.	В	17.	В
3.	В	8.	E	13.	В	18.	D
4.	D	9.	В	14.	С	19.	С
5.	D	10.	D	15.	С	20.	С